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Abstract

In collision events, fermions may spontaneously radiate a boson, which can either be reabsorbed or emitted. These pro-
cesses are radiative corrections which, in superposition with their leading order counterpart, results in corrections to cross-
sections proportional to log( s

a2 ) log( s
b2
), wheres is the centre ofmass energy squared, anda, b are often related to themasses

of the particles involved or an infrared (IR) regulator. This study derives these corrections in quantum electrodynamics and
the electroweak theory. We find that the corrections are generally of the aforementioned form. We find that in the quantum
electrodynamic case, these are IR divergent, but cancel under the scrutiny of an inclusive cross-section. In the electroweak
case, we find only a partial cancellation, however the residual is IR finite, so does not pose an offence to experimental calcu-
lations.



1 Introduction

1.1 Radiative Corrections at the TeV Scale
Today, much of modern physics is concerned with the high
energy frontier, where large colliders probe the TeV scale.
At this energy scale, much larger than the rest mass of any
standard model boson, higher order corrections to the cross-
sections for scattering and annihilation processes contribute
greatly. Scattering amplitudes inclusive radiative effects, the
soft emission of bosons (Bremsstrahlung) or loops with soft
bosons at vertices, often contain infrared (IR) divergences
arising from singular denominators in the fermion propaga-
tor(s). These IR divergences lead to unphysical cross-sections
containing infinities as the momentum of the soft (massless)
boson goes to zero [1]. However, as discovered by Bloch and
Nordsieck, consideration of an inclusive cross-section, one that
includes the summationof both soft Bremsstrahlungand ver-
tex corrections, provides a cancellation of their IR behaviour
to all orders in quantum electrodynamics (QED) [2]. After
cancellation of these divergences, a single scalar correction to
the cross-section, proportional to log2(s) (so called Sudakov
double logs), is found, where s is the centre-of-mass energy
squared [3].

Aside, these effects arise not only inQEDbut also individ-
ually in quantum chromodynamics (QCD) and electroweak
physics. In QCD similar IR divergences to QED are found,
however their cancellation is more complex. The recovery of
finite cross-sections is fulfilled after summing over the real
emission, vertex loops, and all colour states of the particle
beam[4, 5]. This additional summationof colour states is per-
missible in an experimental context because the colour con-
finement of the strong force mandates that it is impossible to
determine the colour content of a hadron. Since it is impossi-
ble to prepare amonochromatic particle beam, we assume the
colour composition of the beam to be randomly distributed,
and thus in the large particle limit, it is acceptable to average
over all possible initial colour states.

In the electroweak case, summing over only the real emis-
sion and loop corrections is not sufficient to produce a finite
correction, like QCD, however one cannot simply sum over
all possible initial lepton states similarly to QCD. Although
the Sudakov logs in the electroweak calculations do cancel
over a homogeneous beam of leptons, as it is possible to pre-
pare abeampure in a given lepton species, the Sudakov logs do
not always cancel and only under assuming there is one cut-
off parameter, theW± or Z0 mass, can finite cross-sections
be recovered[6]. At the TeV scale, Sudakov effects contribute
around 10% to the cross-section of relevant processes.

1.2 This Report
This report details an investigation into the origin of the Su-
dakov logs, both in pure QED and the electroweak sector.

Our approach is phenomenological in nature; we derive the
Sudakov logs by explicitly computing the forms of some next
leading order corrections to the cross-sections for selected
scattering and annihilation processes. Namely, we compute
the corrections to scattering processes in QED and the elec-
troweak theory arising from soft Bremsstrahlung and vertex
loops. Using crossing-symmetry (Section 2.3), we also prove
this is the same for annihilation.

In the QED case, we show the explicit cancellation of the
IR divergences and ponder the physical implications of this
result. Thereafter, we provide a physical prediction based on
the 1st order correction to the cross-section.

In the electroweak case, we show that cancellation of the
corrections is not complete, but that due to the nature of the
massive bosons mediating the weak force, there are no IR di-
vergences, and so the correction to the cross-section is finite.
We also point out that due to the nature of the electroweak
theory, it could be possible that the lack cancellation of is
specifically due to the lack of a counterpart emission process
for aW±-boson in a vertex loop.

1.3 Conventions
The convention in this report is that we take the spacelike
components of the Minkowski metric to be negative,

ηµν = Diag(1,−1,−1,−1). (1)

We will also use natural units,

h̄ = c = kB = 1. (2)

For Feynman diagrams, time runs horizontally from left
to right, and the Feynman gauge, ξ = 0, is used implicitly to
simplify propagator denominators.

Vectors without a bold typeface are 4-vectors, and those
with bold are 3-vectors.

2 Theory

In this section, we explore the necessary theory which un-
derpins the derivations of Sudakov logs in the following sec-
tions. Attention is paid to the formulation of scattering am-
plitudes which forms the basis of our phenomenological ap-
proach. We also investigate the construction of cross-sections
from scattering amplitudes by integrating over the relevant
phase-space and introducingMandelstam variables into the
expressions to encode the kinematics of the collisions. We
will also discuss crossing symmetry, which allows us to switch
between scattering and annihilation amplitudes. We give at-
tention to the introduction of Feynman parameters, which
streamlinesworkingwithmultiple propagator denominators.
Penultimately, we will briefly detail some important integrals
from the study of classical radiation from an electron due to a
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potential, which simplifies many of the quantum results later
in the document. Finally, we give a brief overview of PaVe
(Passarino-Veltman) functions, which act as an alternative to
Feynman parameters for evaluating loop integrals, amongst
other applications.

2.1 Scattering Amplitudes
The construction of scattering amplitudes is well-
documented, see [1, 7], so we only briefly detail the necessary
material here.

The Feynman rules for QED and EW theory are given
in Appendix A. Construction of scattering amplitudes from
the Feynman rules follows a simple scheme. Firstly, one con-
structs a Feynmandiagramof the process under investigation,
for example Figure 1 - the simplest scattering process in QED.

γ ↓ q

e−(p) e−(p′)

µ−(k) µ−(k′)

Figure 1: The tree-level QED Feynman diagram for the scat-
tering of an electron off a muon, or vice versa. The incoming
momentum for the electron (muon) is p (k), and likewise the
outgoing momentum is p′ (k′). The momentum transfer, q,
is from the electron to the muon.

It is thenpossible to construct the scattering amplitude by
inserting the relevant expressions for the elements within the
Feynmandiagram in the correct order. Beginning at anoutgo-
ing fermion (incoming anti-fermion), an anti-spinor (spinor)
is collected. Then following backwards along the line, one
picks up the necessary propagators and vertex couplings, fi-
nally ending with a spinor (anti-spinor). The remaining bo-
sonpropagators are then inserted into the expression. For Fig-
ure 1, the scattering amplitude is given by

iM = [ū(p′)(ieγµ)u(p)][ū(k′)(ieγν)u(k)]

×
(

−igµν

q2 + iε

)
,

(3)

where it can be seen that the first term in brackets corresponds
to the electron line, the second corresponds to themuon line,
and the final term is the photon propagator connecting the
two.

Much of the work associated with scattering or annihila-
tionprocesses is the extensiveDirac algebra involved in simpli-
fying the expression for iM or |M|2. Appendix B gives some
useful relations for dealing with the associated Dirac algebra.

2.2 Cross-Sections

We now look at the construction of cross-sections from the
amplitudes, iM. The master formula for producing cross-
sections from amplitudes is

σ = F
∏
f

(∫
d3pf

(2π)3(2Ef )

)
|M|

2
(2π)4

× δ(4)
(∑

f

pf − p1 − p2

)
,

(4)

where F is the flux scaling, given by F = 1/(4EaEb|va −
vb|) and is approximately equal to 1/2s when s � mamb

[8]. The 4D delta-function enforces the on-shell condition
for real particles.

The bar over the |M|
2
means that |M|2 has been suit-

ably averaged over the spin degrees-of-freedom of the parti-
cles, and/or any other remaining degrees-of-freedom.

2.3 Crossing Symmetry

We may often wish to switch from discussing a scattering
event to an annihilation event. Our motivation for this not
only follows from a general interest in discussing both types
of event but also because scattering events are generally eas-
ier to work with. Often with annihilation events, there are
additional imaginary components which can complicate the
algebra.

By inspecting Figure 1, we see that rotating the diagram
90° anti-clockwise converts the diagram into an annihilation
process, with an incoming electron and position, and out-
going muon and antimuon. This symmetry extends more
generally than just to the Feynman diagram, and is a symme-
try of the S-matrix itself, representative of a change of vari-
ables which switches any amplitude from describing a scatter-
ing event to an annihilation one, or vice versa. This variable
change is given by

p′ → −p′, k → −k, (5)

and the other variables stay the same.
This change of variables can be easily remembered by con-

sidering which particles go to antiparticles (or antiparticles to
particles) when the relevant Feynman diagram is rotated. It
is these particles/antiparticles whose momentum contains a
sign change.

Although it is possible, in principle, to make this change
at any point in the derivation, we should aim to restrict this
change to either the start or end of a derivation to minimise
the chance of mistakes.
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2.4 Mandelstam Variables
Mandelstam variables provide an easy way to encode the
kinematics of a collision event into a set of variableswhich can
entirely replace the 4-momenta in the cross-section, square-
amplitude, or other relevant expressions [1]. One key char-
acteristic of Mandelstam variables is that they are entirely
Lorentz invariant, so reduce the mathematical complexity as-
sociated with considering different frames of reference.

For the scattering of two particles with incoming 4-
momenta p, k and outgoing momenta p′, k′, Mandelstam
gives three variables s, t, u such that

s = (p+ k)2 = (p′ + k′)2,

t = (p− p′)2 = (k − k′)2,

u = (p− k′)2 = (k − p′)2,

(6)

where s is the square of the invariant mass, and t is the square
of the momentum transfer. The symbols s, t, u also refer to
the channels of different Feynman diagrams/scattering events.
s-channel refers to an annihilation event (a timelike channel),
t-channel refers to a simple scattering event (a spacelike chan-
nel), and u-channel refers to a scattering event with the roles
of p′, k′ interchanged.

The inner products of the four momenta can also be
parametrised in terms of the Mandelstam invariants,

pµkµ =
s−m2

p −m2
k

2
,

pµp′µ =
m2

p +m2
p′ − t

2
,

pµk′µ =
m2

p +m2
k′ − u

2
.

(7)

The invariants can also reconstruct the total mass of the
particles in their own rest frames,

s+ t+ u = mp +mk +mp′ +mk′ . (8)

In the relativistic limit, where E2 ≈ p2, the expressions
for s, t, u are relaxed,

s = 2pµkµ = 2p′µk′µ,

t = −2pµp′µ = −2kµk′µ,

u = −pµk′µ = −2kµp′µ,

(9)

which should be clear from taking (7) with E � mi, so
mi −→ 0.

2.5 Feynman Parameters
With each additional propagator in the amplitude, there is an
additional factor in the denominator which complicates the
handling of the denominator. Feynman introduced amethod
to reform the denominator into a single polynomial which is

much easier to handle. Although not unique to simplifying
loop integrals, the use of Feynman parameters is often asso-
ciated with the computation of amplitudes for processes in-
volving loops, as it provides an easy way of integrating over
the loop momenta. After performing a change of variables
to the Feynman parameters once they have been determined,
the loop integral is spherically symmetric and therefore easy
to compute.

There are numerous identities for different denominators
of different forms. However, the identitywhich is ofmost use
to this report is

1

A1A2...An
=

∫ 1

0

dx1...dxnδ(
∑

xi − 1)

× (n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n
,

(10)

where Ai are the propagator denominators, and xi are the
corresponding Feynman parameters. The Dirac delta func-
tion in the integral gives a useful relation to use in the change
of variables, explicitly

∑
xi = 1.

The Feynman parameters reduce the denominator to the
form

D = l2 −∆, (11)
after a Wick rotation, where l is a 4-momentum to be deter-
mined. In many cases, where the Feynman parameters are
used to simplify loop integrals, the integrand is a linear com-
bination of fractions with numerators composed of either 1
or l2 and denominatorsDm. [1] gives two standard integrals
for use in this situation. They are∫

d4l

(2π)4
1

(l2 −∆)m

=
i(−1)m

(4π)2
1

(m− 1)(m− 2)

1

∆m−2
,

(12)

and∫
d4l

(2π)4
l2

(l2 −∆)m

=
i(−1)m−1

(4π)2
2

(m− 1)(m− 2)(m− 3)

1

∆m−3
.

(13)

2.6 Classical Radiation
In anticipationof someof the resultswederive fromquantum
field theory, we wish to briefly study the form of the energy
radiated from a classical electron due to a potential kick. In
summary of the system setup, we consider an electron which
is kicked at x = 0, changing themomentum from p to p′. As
derived in [1], the total energy radiated in this system is given
by

Erad =

∫
d3k

(2π)3

∑
λ=1,2

e2

2

∣∣∣∣ελ(k) · ( p′

k · p′
− p

k · p

)∣∣∣∣2.
(14)
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Using the completeness relation for polarisation vectors
(Appendix B), an alternate expression is derived,

Erad =

∫
d3k

(2π)3
e2

2

(
2p · p′

(k · p′)(k · p)
− m2

(k · p′)

− m2

(k · p)

)
.

(15)

Choosing the frame in which p0 = p′0 = E,

kµ = (k,k), pµ = E(q,v), p′µ = E(1,v′), (16)

allows the expression ofErad in terms of the differential inten-
sity I(v,v′),

Erad =
e2

(2π)2

∫
dkI(v,v′), (17)

where I(v,v′) is given by

I(v,v′) =

∫
dΩk̂

4π

(
2(1− v · v′)

(1− k̂ · v)(1− k̂ · v′)

− m2

E2(1− k̂ · v′)2
− m2

E2(1− k̂ · v)2

)
.

(18)

We can see trivially that this integral is divergent in two
places, k̂ · v, k̂ · v′ → 1, which corresponds to radiation
closely parallel to the incoming and outgoing electron direc-
tion. Since themajor components of this integral are split into
these two directions, we may approximate the integral as the
sum of two components in these directions. This approxima-
tion can be written explicitly as

I(v,v′) ≈
∫ cos θ=1

k̂·v=v′·v

(1− v · v′)d cos θ
(1− v cos θ)(1− v · v′)

+

∫ cos θ=1

k̂·v′=v′·v

(1− v · v′)d cos θ
(1− v′ cos θ)(1− v · v′)

.

(19)

Performing these integrals, and letting the momentum
transfer be q, we find

I(v,v′) ≈ 2 log
(
−q2

m2

)
, (20)

which will be a very useful result.

2.7 PaVe 3-Point Integrals
In 1979, Passarino andVeltman introduced amethod for eval-
uating loop integrals by means of substitution, which be-
comes very relevant when dealing with complex Feynman di-
agrams, as will be the case in the final section of this report. In

their papers, [9, 10], they detail numerous methods for evalu-
ating integrals of varying nature, however, we only require the
so calledC integrals, which are used to evaluate loop integrals
with three propagators.

The n dimensionalC integrals are given by

C0;Cµ;Cµν ;Cµνα(p, p
′,m1,m2,m3)

=
1

iπ2

∫
dnk

1; kµ; kµkν ; kµkνkα
D

(21)

where

D = (k2+m2
1)((k+p)

2+m2
2)((k+p+p

′)2+m2
3), (22)

and the semi-colon notation means that C0 is the case when
1 is the numerator,Cµ when kµ is the numerator, etc.

Since the numerator of the integrand of a vertex loop in-
tegral can simplified and expanded such that it is a linear com-
bination of 1, kµ, ..., it is possible to substitute the 1, kµ, ...
terms for the known results of (21), which we give below1:

Cµ = pC11 + p′C12, (23)

Cµν = pµpνC21 + p′µp
′
νC22

+{pp′}µνC23 + δµνC24.
(24)

The curly bracket notation {pp′}µν corresponds to a sym-
metric tensor product, a bilinear combination of the mo-
menta,

{pk}µν =
1

2
(pµp

′
ν + pνp

′
µ). (25)

The Cij terms have been explicitly evaluated in [11], which
allows for further substitution. Re-explaining this slightly,
this means that we ought to be able to evaluate a loop inte-
gral by expanding the numerator into linear combinations of
1, kµ, ... and substituting the corresponding expressions for
C0, Cµ, ....

3 Radiative Corrections in QED

Nowwebegin our study of the derivation of the Sudakov logs
introduced earlier. In this section, we explore the effects of ra-
diative corrections to scattering in QED. We will first discuss
changes to the amplitude and cross-section of a leading order
process when a soft photon is radiated from the electron in a
e−µ− → e−µ− event. Following this discussion, we will ex-
plore similar changes made by the radiation of a photon fol-
lowed by its absorption after a hard process, forming a loop
around the vertex. We will critically compare the similarities
between the results of each case, and speculate about anyphys-
ical meaning we can derive. Finally, we conclude the section
by providing an experimental prediction using this theory.

1TheCµνα case is not relevant to this study, but can be found in Appendix E of [9]
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3.1 Soft Bremsstrahlung
We wish to find an expression for the cross-section of a hard
process with the real emission of a soft photon before or af-
ter the hard event. Consider Figure 2 which details such a
process. In this event, two fermions f and F scatter off each
other and a single photon is radiated from the incoming f . A
full quantummechanical descriptionof this processwould re-
quire that we also consider the superposition of this diagram
with the diagram where the photon is radiated after the hard
event.

p
p− k

p′

k

γ

l l′

f f

F
F

Figure 2: Scattering of two fermions f, F . Fermion f
has incoming momentum p, and outgoing momentum p′.
Fermion F has incoming momentum l and outgoing mo-
mentum l′. The (hard) scattering process is represented by
the blob. A photon with outgoing momentum k is radiated
from f before the hard process.

Since the photon vertex does not explicitly affectF or any-
thingwithin the blobwith the radiated photon, we can group
the entire F fermion line and the blob into one amplitude,
M0, the process without any radiative emission. With this in
mind, we construct the amplitude for Figure 2 and its coun-
terpart using the normal Feynman rules. The amplitude is
given by

iM = u(p′)
(
M0(p

′, p− k)
i(�p− �k +m)

(p′ − k)2 −m2

× (−ieγµ)ε∗µ(k) + (−ieγµ)ε∗µ(k)

× i(�p
′ + �k

′ +m)

(p′ + k)2 −m2
M0(p

′ + k, p)
)
u(p).

(26)

This expression is then simplified significantly before con-
sidering what next major step to take. The first thing to note
is that since wewish to investigate IR divergences, we can take
the soft limit k as this is the region which will produce the IR
divergence. Since k is now small with respect to the momen-
tum transfer (|k| � |p−p′|), we canmake some changes to
the amplitude of the hard process. We find thatM0(p

′, p −
k) ≈ M0(p

′+k, p) ≈ M0(p, p
′), and so we can anticipate

factorising outM0(p, p
′). Additionally, this means that the

�k term is negligible in the propagators,�p+ �k +m ≈ �p+m.

Using the anticommutation relations for Dirac matrices
in addition to the Dirac equation (see Appendix B), we see
that some terms in the numerators of (26) will simplify,

(�p+m)γµε∗µ(k)u(p) = 2pµε∗µu(p), (27)

and similarly,

u(p′)γµε∗µ(�p
′ +m) = u(p′)2p′µε∗µ. (28)

Using theMandelstamvariables fromSection 2.4, we sim-
plify the denominators of the propagators by converting them
fromdifferences ofmomentum squared, to inner products of
momenta. The simplifications follow from (6) and (9) which
give

(p−k)2−m2 = −2p·k, (p′+k)2−m2 = 2p′ ·k. (29)

Theuse of the above simplifications to (26), in addition to
the factorising ofM0 as hinted, give the following amplitude

u(p′)M0(p
′, p)u(p)e

[
p′ · ε∗(k)
p′ · k

− p · ε∗(k)
p · k

]
. (30)

At this stage, we start to see the implications of soft radi-
ation. Inspecting (30), there are two major components: an
anti-spinor-amplitude-spinor term and a multiplicative fac-
tor. Looking closer at the spinor and amplitude term, we see
that this is actually the form of the amplitude for Figure 2
without the soft Bremsstrahlung correction. This implies that
the rest of (30), which does not rely on the spinor and am-
plitude term, must contain complete information about the
radiative correction. What is more, on inspection of the re-
maining term, explicitly

e

[
p′ · ε∗(k)
p′ · k

− p · ε∗(k)
p · k

]
, (31)

it is clear to see that this term is scalar, since all vectors are dot-
tedwith another vector, and all remaining terms, such as e, are
scalar themselves. This result is exceptionally powerful since
we can infer that generally any result known forM0 can be
corrected by (31), to include the effect of soft Bremsstrahlung.

Now, the rest of this subsection is dedicated to the investi-
gation of the consequences of this fact, namely the calculation
of the cross-section.

To calculate the cross-section, we need only consider
which aspects of the master cross-section equation, (4), will
affect (31). Looking at (4), we see that there aremultiple terms
which will affect the scale factor derived. Namely, (4) de-
mands that the matrix element not only be squared but that
it also averages over all remaining degrees-of-freedom. In this
case, the remaining degrees-of-freedom are the two polarisa-
tion states of the photon. Additionally, we must introduce
our own caveat aside from the cross-section integral, that (31)
is only a point in the phase-space since the momentum k is
yet to be determined, so we integrate in a Lorentz invariant
manner over k to account for all allowed k.

5



Putting this together, the correction to the cross-section is
therefore∫

d3k

(2π)3
1

2k

∑
λ=1,2

e2

∣∣∣∣∣p′ · ε(λ)p′ · k
− p · ε(λ)

p · k

∣∣∣∣∣
2

, (32)

where it is possible to see that each of the aforementioned ac-
tions have been implemented - (31) has been squared, is aver-
aged over the polarisation states, λ, and is integrated over the
phase-space, where we have used textbook normalisation2.

The integrand of (32) can also be thought of as the differ-
ential probability, dP , of radiating a single photon. However,
this has problematic implications. Looking at the denomina-
tor of (32), it can be noticed that this is a divergent integral
as k → 0. This is especially problematic since this is the re-
gion we have defined our problem to be valid within. This
would suggest that as the photon momentum tends to zero,
the probability of radiating a single photon tends to infinity.
This is clearly wrong, but we can restore some dignity to dP
by considering it the number of photons radiated. In which
case, as k → 0, the number of soft photons radiated tends to
infinity.

This is not an excellent prediction, so we now pay care-
ful attention to the limits of the integral to determine a way
to let the integral behave well. We can determine an upper
limit simply by enforcing that k is soft, and therefore we use
the momentum transfer, |q| as the upper limit. For the lower
limit, wemay give the photon a small fictitiousmass,µ, which
serves to cut off the integral. This introduction of a fictitious
mass is done in the hope that we find a way in the future to
remove any and all dependence on µ.

Looking at the formof (32),we see that is closely resembles
(14) from Section 2.6. In fact, using the results from Section
2.6, we can write (32) instead as

α

π

∫ |q|

µ

dk

k
I(v,v′), (33)

where α = e2/(4π) is the fine structure constant in natural
units. Since I(v,v′) has no k dependence, the evaluation of
the integral is trivial, and we find that the correction to the
cross-section is

α

π
log
(−q2
µ2

)
log
(−q2
m2

)
. (34)

The pair of logs form the Sudakov double logs, as men-
tioned first in Section 1.1. We also see that this correction is
O(α), as would be expected from a single vertex correction to
a QED process.

We now ask whether our result would be different for an
annihilation process. Using the variable change outlined in
Section 2.3, p → p, p′ → −p′, we investigate whether the

sign change will modify our result, (34). Looking at (32), the
only termcontainingp′ is a fractionwith a singlep′ each in the
numerator and denominator. Therefore, under p′ → −p′,
this term is unchanged, and so (34) is invariant under a cross-
ing operation. This is an unsurprising result, as a different
result would raise questions as to whether there was informa-
tion embedded at the vertex pertaining to whether an annihi-
lation or scattering event were to occur3.

3.2 Vertex Loops

Now that we have derived the Sudakov double logs in the
QED case for soft Bremsstrahlung, we will look at the form
of the cross-section when there is a loop at the vertex due to
photon emission and absorption.

It is possible to derive a functionΓµ which acts as a vertex
coupling and theoretically contains all information about am-
putated loop corrections to all orders. For our investigation,
we evaluate this to first order, effectively the process as given
in Figure 3.

p

k k + q

p′
p− k

γ

q γ

f f

Figure 3: The scattering of a fermion, f , off an external source,
e.g. another fermion. f enters with momentum p, sponta-
neously emits a photon of momentum p − k, which it reab-
sorbs following the hard scattering event, leaving the diagram
with momentum p′.

To first order, we may write the vertex function as Γµ =
γµ + δΓµ, where it is clear that γµ must be the leading order
termwithout any loops, following from the normal Feynman
rules in QED. Since γµ requires no simplification, we spend
the rest of this subsection evaluating δΓµ, anticipating the re-
covery of Sudakov logs.

u(p’)δΓµu(p) is scattering amplitude for the 1-loop
QED correction to the vertex and can be written as∫

d4k

(2π)4
−igνρ

(k − p)2 + iε
u(p′)(−ieγν)

× i(�k
′ +m)

k′2 −m2 + iε
γµ

i(�k +m

k2 −m2 + iε
(−ieγρ)u(p)

(35)

2Textbooks such as An Introduction to Quantum Field TheoryM. Peskin, D. Schroeder [1], orQuantum Field Theory F. Mandl, G. Shaw [7].
3The vertex at which the soft photon was radiated.
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by inspecting Figure 3 and using the Feynman rules (Ap-
pendix A), excluding the photon propagator for the exter-
nal photon. Using the commutation relations and the Dirac
equation, we simplify the numerator to the following form

(2π)4u(p′)
[
�k
′γµ�k +m2γµ − 2m(k + k′)µ

]
u(p). (36)

Before further simplifications to the numerator aremade,
wemake simplifications to the denominatorwhich influences
our operations on the numerator in future steps. We use the
Feynman parameters, as outlined in Section 2.5, to convert
the denominator to a polynomial (quadratic) in k. We let
A1 = ((k − p)2 + iε), A2 = (k′2 − m2 + iε),
A3 = (k2 −m2 + iε), and use (10) to find replace the prop-
agator denominators. The resulting denominator,D, is

x(k2−m2)+y(k′2−m2)+z(k−p)2+(x+y+z)iε (37)

whichmay be simplified by simple expansion, substitution of
k′ = k + q, and factorised intoD = k2 + 2k(yq − zp) +
yq2 + zp2 − (x+ y)m+ iε. Setting l = k + yq − zp, we
can complete the square for l inD,

D = l2 − xyq2 + (1− z)2m2 + iε

= l2 −∆+ iε,
(38)

and defining ∆ = −xyq2 + (1 − z)2m2. We now have a
simple form forD, where∆ can be thought of as an effective
mass term since this is the form of a massive propagator with
momentum l. Using l = k+yq−zpwe perform a change of
variables on the numerator, (36). Simple differentiation finds
d4l = d4k, and sinceD depends only on the magnitude of l,
the integral can be made spherically symmetric if the numer-
ator depends on l2. The numerator is simplified further by
noting that terms within the integrand odd in lµ/D3 will in-
tegrate to zero, and thus can be removed from the numerator.
Additionally, terms containing lµlν factors can be simplified,
setting them to

lµlν → gµν l2

4
. (39)

This is possible for the following reasons: (1) since the integral
vanishes unless µ = ν, so the integrand is proportional to a
symmetric tensor; (2) since this quantitymust also be Lorentz
invariant, the onlypossible tensor satisfying these properties is
themetric tensor, so we recover (39). The factor of 1/4 comes
from the dimensionality.

The Mathemetica package FeynCalc is employed to ap-
ply these changes and simplify the extensive Dirac algebra
[12, 13, 14, 15, 16]. Applying the two aforementioned rules to
the output of FeynCalc, we find the numerator to be

u(p′)
[
− 1

2
γµl2 + (−y�q + z�p)

× γµ
(
(1− y)�q + z�p

)
+m2γµ

− 2m
(
(1− 2y)qµ + 2zpµ

)]
u(p).

(40)

We now decompose this into the form F1(q
2)γµ +

F2(q
2)iσµνqν/2m, where F1(q

2), F2(q
2) are form factors

of interest. This is done by first decomposing the numerator
into the formAγµ + B(p′ + p)µ + Cqµ then applying the
Gordon Identity, γµ → (p′ + p)µ/2m + σµνqν/2m, to
remove the (p′ + p)µ terms.

FeynCalc is once again employed to perform this routine
with use of the GordonSimplify[] function. After this
decomposition, we apply the Ward identity, qµΓµ = 0, to
remove all terms proportional to qµ. Now, putting this nu-
merator back into the integral, with the new denominator,
we have a new expression for the first order vertex corrected
amplitude

2ie2
∫

d4l

(2π)4

∫ 1

0

dxdydzδ(x+ y + z − 1)
2

D3

× u(p′)
[
γµ(−1

2
l2 + (1− x)(1− y)q2

+ (1− 4z + z2)m2)

+
iσµνqν
2m

(2m2z(1− z))
]
u(p),

(41)

We perform a second change of variables on this integral
to convert the space fromMinkowski to Euclidean, allowing
for simpler spherical integration. We let l0 = il0E and l = lE ,
where theE stands for Euclidean, and thus lE is a Euclidean
4-momentum. This is a Wick rotation in the l0 plane. Since
the l0 is generally complex, we deform the contour of integra-
tion such that it spans the imaginary axis (−i∞, i∞) instead
of the real axis (−∞,∞). Since the contour is continuous
and the start/end points cannot change, there are arcs at a ra-
dial distance of∞, but these do not contribute to the integral
since the integrand quickly drops off at large |l0|. We now
use (12) and (13) to evaluate the integral. However, (13) is UV
divergent form = 3 and so we introduce a regulator to keep
the integral well behaved. WeusePauli-Villars regularisation,
that is introducing a fictitious large massΛ to regulate the di-
vergence∆ → ∆+ zΛ = ∆Λ.

The divergent integral is then instead,

∫
d4l

(2π)4

(
l2

(l2 −∆)3
− l2

(l2 −∆Λ)3

)

=
i

(4π)2

∫ ∞

0

dl2E

(
l4E

(l4E −∆)3
− l2

(l2 −∆Λ)3

)

=
i

(4π)2
log
(∆Λ

∆

)
.

(42)

Putting these terms together, the full expression for the
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amplitude becomes

α

2π

∫ 1

0

dxdydzδ(x+ y + z − 1)u(p′)
(
γµ

×
[
log

zΛ2

∆
+

1

∆

(
(1− x)(1− y)q2(1− 4z

+ z2)m2
)]

+
iσµνqν
2m

[ 1
∆
2m2z(1− z)

])
u(p).

(43)

Looking at the individual form factors, we notice that
F1(0) 6= 1. At zero momentum transfer, F1(0) is equal
to the charge of the particle, in this case the electron and
not what we have derived so far. To restore such physicality
to F1(q

2), we normalise F1(q
2) by making the substitution

δF1(q
2) → δF1(q

2) − δF1(0), where δF1(q
2) is the first

order correction to F1(q
2).

There is also one more IR divergence arising from the
1/∆ term in F1(q

2), which must be addressed. We do so
by introducing a second mass regulator, µ, which is small,
∆ → ∆+ zµ2 = ∆µ.

Thus, the form factors can be written,

F1(q
2) = 1 +

α

2π

∫ 1

0

dxdydzδ(x+ y + z − 1)

×

[
log
( m2(1− z)2

m2(1− z2)− q2xy

)
+
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z

− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
,

(44)

F2(q
2) =

α

2π

∫ 1

0

dxdydzδ(x+ y + z − 1)[
2m2z(1− z)

m2(1− z)2 − q2xy

]
.

(45)

We see that F1(q
2) is IR divergent as µ → 0, as just dis-

cussed, and F2(q
2) has no divergences4. We set x, y = 0 to

study just the IR effects in F1(q
2). This simplifies the inte-

gral,

F1(q
2) ≈ 1 +

α

2π

∫ 1

0

dxdydzδ(x+ y + z − 1)

×

[
−2m2 + q2

m2(1− z)2 − q2xy + µ2
− −2m2

m2(1− z)2 + µ2

]
.

(46)

One integral is evaluated using the delta function, and the
other two can be handled using a change of variables. We

choose y = (1 − z)ξ and w = (1 − z), thus the integral
becomes

F1(q
2) ≈ 1 +

α

2π

∫ 1

0

dξ
1

2

∫ 1

0

d(w2)

×

[
−2m2 + q2

w2(m2 − q2ξ(1− ξ)) + µ2
− −2m2

m2w2 + µ2

]
.

(47)

Evaluation of the integral overw2 gives

F1(q
2) ≈ 1 +

α

2π

∫ 1

0

dξ

[
−2m2 + q2

m2 − q2ξ(1− ξ)

× log
(m2 − q2ξ(1− ξ)

µ2

)
+ 2 log

(−q2
µ2

)]
.

(48)

We have letm2 → −q2 in the numerator of the logarithmic
term since in the limit µ → 0 it makes little difference, and
we only require that the numerator is proportional to either
m2 or−q2. We can simplify this expression by collecting the
IR divergent term into a single function fIR(q2) given by

fIR(q
2) =

∫ 1

0

( m2 − q2/2

m2 − q2ξ(1− ξ)

)
dξ − 1, (49)

reducing F1(q
2) to the form,

F1(q
2) = 1− α

2π
fIR(q

2) log
(
−q2

µ2

)
, (50)

Evaluation of fIR(q2) in the limit of large−q2 gives

fIR(q
2) ≈ log

(−q2
m2

)
, (51)

and so in this limit, F1(q
2) is given by

1− α

2π
log
(−q2
m2

)
log
(−q2
µ2

)
. (52)

However the correction to the cross-section is proportional to
|M2|, sowe square (52) anddelete all termsO(α2), giving the
correction,

1− α

π
log
(−q2
m2

)
log
(−q2
µ2

)
, (53)

and so we recover the Sudakov double logs from the consid-
eration of a radiative loop at the electron vertex.

3.3 Cancellation of Sudakov Logs
In this next subsection,wewill look at the similarities between
(34) and (53), and discuss the IR divergences.

Looking at (34) and (53), one can spot the striking similar-
ity between the two equations, that they both contain identi-
cal factors. This similarity points to the consideration of in-
clusive cross-sections, first mentioned in Section 1.1. Taking the

4Direct evaluation ofF2(0) gives α
2π

, which corrects the g-factor of the electron. An important result in particle physics.
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sum of (34) and (53) gives unity. This result suggests that in-
dividually soft Bremsstrahlung events and vertex loop events
are entirely unphysical, since their individual corrections are
µ dependent, on a mass regulator. In principle µ = 0 for
a photon, so the individual cross-sections, although having a
well definedfirst order correction, are still IRdivergent. How-
ever, it wouldmean to suggest that, since the sumof both cor-
rections has no µ dependence at all, the total cross-section of
these two events together is a physical quantity. Thus, when
one considers soft Bremsstrahlung, onemust consider vertex
loops. One could conceptually think of this like they are an
inseparable superposition. Individually, we are led to believe
that they are each physical processes since they can be con-
structed legally using the Feynman rules. However, given that
it is impossible to reason that a cross-section can actually be
infinite, wemust find a way to unify the two events into a sin-
gle process which is physical, e.g. that they are two parts to
one inseparable process, perhaps. We are then moved to ask
whether the Feynman rules are fit for purpose if they permit
the construction of unphysical diagrams, and so we question
if further research ought to be conducted to place constraints
on the construction of Feynman diagrams. Or, maybe, as a
physics community, we appreciate that the loose rules allow
us to construct more than that which is physical, and so the
Feynman rules ought not to be meddled with.

We are inclined to find an intuitive way to understand
the Sudakov log cancellation, following from our statement
about the (un)physicality of the soft Bremsstrahlung and ver-
tex loop events, i.e. why is each event unphysical on its own,
and where does the cancellation come from? In either case
(soft Bremsstrahlung or vertex loops) a photon is emitted, so
we could speculate that in the event a photon is radiated, we
must consider the sum of all possible effects of this emission
(subsequent absorption, pair production, etc.), giving a result
which cancels the Sudakov logs. Since this is generally true,
especially when considering event generation, this thinking
does not give us any more insight than quantum mechanics.
Alternatively, as our method has been to 1st order, it could be
that we only have to consider the whole 1st order subset of
the infinite possible radiative perturbations, and likewise in a
2nd order treatment, we must consider all possible 2nd order
processes.

However, this would still not reduce the cancellation
down to its simplest structure. The set of 1st order radia-
tive corrections is actually still a superset of the set required
to cancel the Sudakov logs. We have not had to consider the
exchange of a photon between the electron and the muon to
provide complete cancellation of the IR divergences, a ‘box
diagram’, and as such the set of 1st order radiative corrections
would over specify the processes needed to provide a cancel-
lation of the Sudakov logs. This does raise further questions
as to why we have not had to consider box diagram style ex-
changes, especially since photon exchange between different
particle/antiparticle species in e−µ− → e−µ− is necessary

for a full 1st order calculation of the amplitude. However,
exercising this line of inquiry does tell us that the QED Su-
dakov logs must be specifically due to photon emission and
exchange on a single particle/antiparticle species, e.g. e+, e−.
However, we cannot specialise this conceptual understanding
of Sudakov logs any further. For instance, it would be im-
possible to pin the Sudakov log cancellation down to a spe-
cific/identifiable particle. This is because its quantum num-
bers are different before and after the hard event (due to amo-
mentum change), thus we cannot identify a single particle as
the same before or after an event. Additionally, due to cross-
ing symmetry, the cancellationof Sudakov logsmust occur for
an annihilation event,where the vertex loop is over an electron
and positron, two distinct particles at the same time. Thus,
again, it would be impossible to pin the cancellation down to
the effect of a single particle.

These and other philosophical insights into the physi-
cal understanding of the cancellation of Sudakov logs were
largely conducted by myself.

3.4 Observables
We will end this section by deriving some observable quanti-
ties using the idea of an inclusive cross-section.

The sum of the corrections due to soft Bremsstrahlung
and vertex loops exclusive of the large −q2 limit is given by
the sum of (33) and (50). To derive a useful cross-section, we
are motivated to prove that I(v,v′) = 2fIR(q

2) for arbi-
trary q2, since this will provide the same cancellation in the
non large −q2 limit. The measured cross-section of the scat-
tering event will be the sum of the cross-sections where scat-
tering is observed, but a photon is not. The observed cross-
section is, therefore, the cross-section that leading-order scat-
tering occurs multiplied by two corrections: (1) a virtual pho-
ton is exchangedbetween the incoming andoutgoing electron
(fermion); (2) a real photon is emitted but is below the detec-
tor sensitivity.

Trivially performing the integral in (33) over k but up to
the energyEl not−q2 gives the IR divergent correction that
a photon is emitted but not detected. This is given by

α

2π
log
(
E2

l

µ2

)
I(v,v′). (54)

Looking at (15), we have

I(v,v′) =

∫
dΩk

4π

(
2p · p′

(k · p′)(k · p)
− m2

(k · p′)

− m2

(k · p)

)
,

(55)

where the last two terms integrate to 1/m2 since∫
dΩk

4π

1

(k̂ · p)2
=

1

2

∫ 1

−1

d cos θ
(p0 − p cos θ)2

=
1

m2
. (56)
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We have used here the usual ‘kinematic’ style decomposition
of interpreting the dot product with an angle between vec-
tors. The first term in the integral is evaluated using Feynman
parameters. That is∫

dΩk

4π

1

(k̂ · p)(k̂ · p′)

=

∫ 1

0

dξ

∫
dΩk

4π

1

[ξk̂ · p′ + (1− ξ)k̂ · p]2

=

∫ 1

0

dξ

[ξp′ + (1− ξ)p]2
=

∫
dξ

m2 − ξ(1− ξ)q2
,

(57)

where q2 = 2m2 − 2p · p′.
Thus we can express the differential intensity as

I(v,v′) =

∫ 1

0

(
2m2 − q2

m2 − ξ(1− ξ)q2

)
dξ − 2, (58)

which upon comparison with (49) immediately proves

I(v,v′) = 2fIR(q
2). (59)

Thus, taking the sum of the corrections for the measured
cross-section, (50) and (54), and substituting (59) we get

1− α

π
fIR(q

2) log
(
−q2

m2

)
, (60)

which has noµ dependence, so is finite, and therefore observ-
able. Experimental use requires more care in handling (49),
however we can use the large−q2 limit to recover a Sudakov
double log style correction,

1− α

π
log
(
−q2

m2

)
log
(
−q2

E2
l

)
. (61)

For example, the cross-section for the scattering of an elec-
tron and muon to first order is

dσ = dσ0

[
1− α

π
log
(−q2
m2

)
log
(−q2
E2

l

)]
, (62)

where dσ0 is the infinitesimal cross-section of the leading or-
der process.

4 Radiative Corrections in Elec-
troweak Physics

Motivated by the cancellation of Sudakov double logarithms
in the QED case, we now study the radiative corrections
in the electroweak theory. In this section, we re-derive
scalar corrections to the leading order cross-section for soft
Bremsstrahlung using a method analogous to that previously
detailed in Section 3.1. Furthermore, we attempt to recover

similar vertex loop corrections in the electroweak theory to
that previously derived for QED in Section 3.2. Since the
electroweak theory introduces two new bosons in addition to
the pre-existing photon, many more diagrams contribute to
a single scattering or annihilation process in the electroweak
theory than in QED. The additional complexity inspires us
to search for a general method for solving electroweak vertex
problems. We then conclude the discussion of electroweak
radiative corrections by re-exploring IR divergences and the
cancellation of Sudakov logarithms.

4.1 Soft Bremsstrahlung
Wenowwish to find a correction analogous to (34) in the elec-
troweak theory. For this subsection, we will focus on a case
similar to the soft Bremsstrahlung seen in Figure 2, however,
the radiated particle is rather aZ0-boson instead of a photon.
Our method follows similarly from Section 3.1, starting with
the construction of the scattering amplitude, which is given
by

u(p′)

(
M0(p

′, p− k)
i(�p− �k +m)

(p− k)2 −m2

×
(
− igz

2
γµ(vf − afγ

5)Vij

)
ε∗µ(k)

+
(
− igz

2
γµ(vf − afγ

5)Vij

)
ε∗µ(k)

× i(��p
′ − �k +m)

(p′ − k)2 −m2
M0(p

′ + k, p)

)
u(p),

(63)

where we have used the Feynman rules in the electroweak the-
ory to substitute the vertex couplings from (26) to the relevant
Z0-boson couplings, −igzγµ(vf − afγ

5)Vij/2. It should
be noted that these couplings are distinctly different from the
QED photon coupling, −ieγµ, due to the γ5 term. The γ5
acts to select only the left-handed particles, the only such par-
ticles that couple in electroweak physics. Thus, there are two
additional important coupling constants in the electroweak
theory, as opposed to QED. These are the vf (vector) and
af (axial vector) couplings seen in (63), which distinguish the
strengths of the coupling to chiral symmetric processes (vf )
and processes which differ between left and right handed par-
ticles (af ). The vf andaf terms have different expressions for
different particles. Although we intend to study just the scat-
tering event e−µ− → e−µ−, we will leave the couplings in a
general form, since our treatment of the scattering amplitude
is quite general.

We next make some simplifying assumptions for (63),
such as assuming the photon momentum k is soft. This has
the same effect as in Section 3.1 where the amplitude for the
hard event,M0, is approximately the samewhether the emis-
sion occurs before or after the hard process. Additionally,
we set Vij = 1, since we intend to work only with lep-
tons. Finally, since we only care about the high energy limit,
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s � m2
Z , we will work in the limit of massless fermions.

In such a case, we need not worry about any coupling to the
Higgs sector and can make similar simplifications to the de-
nominator of the amplitude using theMandelstam invariants
(or equivalently taking the massless limit), as laid out in Sec-
tion 2.4 and 3.1.

Exploiting these simplifications and applying them to the
amplitude, we find the amplitude, iM, becomes

u(p′)

(
M0(p

′, p)
−(�p+m)

2p · k

(gz
2
γµ(vf − afγ

5)
)
ε∗µ(k)

+
(gz
2
γµ(vf − afγ

5)
)
ε∗µ(k)

(��p
′ +m)

2p′ · k
M0(p

′, p)

)
u(p).

(64)

Next, we focus on simplifying the numerator of (64),
with the aim of collecting γµ and γµγ5 terms separately, and
at the same time moving them all to the left. Where possi-
ble, we try to convert terms to scalars either by using theDirac
equationormultiplying vectorswith other vectors to produce
an inner product. The numerator in the top line of (64) is
simplified to

gz
2

(
vf (�p+m)γµε∗µ − af (�p+m)γµγ5

)
u(p)

= gz

(
vf − afγ

5
)
p · ε∗u(p).

(65)

The explicit details of the algebra are given in Appendix C for
brevity. The other numerator term is simplified similarly to

u(p′)gz(vf + afγ
5)p′ · ε∗, (66)

where it is clear the only difference between these terms,
and therefore the difference between the numerators for the
soft Bremsstrahlung before or after the hard process is a sign
change on af , and different momenta, naturally. Inserting
(65) and (66) into (64), we find that the amplitude becomes

gz
2

(
u(p′)M0(vf − afγ

5)u(p)

)[p′ · ε∗
p′ · k

− p · ε∗

p · k

]
,

(67)

after expanding the terms containing the coupling constants,
and factorising all scalar terms.

(67) is an important result, and a milestone in the deriva-
tion of the corrections in electroweak theory. Already, look-
ing at (67), we see that there is a component proportional to
u(p′)M0u(p)multiplied by a scale factor involving the elec-
troweak coupling constant forZ0-bosons, gz , the vector cou-
pling, vf , the particle momenta, p, p′, and the photon polar-
isation vector, ε∗. The term in square brackets is identical
to the correction in (30), suggesting that this term is related
to the behaviour of soft Bremsstrahlung, independent of the
framework, e.g. QED, EW theory. The term proportional

to u(p′)M0u(p) is identical to the QED case up to the scale
factor, and so can be given the same treatment as the deriva-
tion in Section 4.1. However, there is a term proportional to
u(p′)M0γ

5u(p), which requires additional handling.
The next step requires squaring the amplitude to derive

the correction to the cross-section. However, since the cur-
rent expression in-between the spinors is quite different to the
QED case, we cannot mimic the QEDmethod verbatim. In-
stead, we explicitly square the amplitude in the hope that this
reduces to simpler expressions similar to the QED case. Since
M is generally complex, squaring means multiplication by
the complex conjugate,M∗, which is equal to the Hermitian
conjugate in this case,M†. Finding the Hermitian conjugate
will require an assumption onM0, in addition to some new
definitions which we detail now.

We assume that M0 contains an odd number of γ-
matrices, and so {M0, γ

5} = 0, from {γµ, γ5} = 0. We
alsodefine thenotationM0 ≡ γ0M†

0γ
0, which gives an easy

way to take theHermitian conjugate of an amplitude contain-
ingM0 in any representation. Applying this to the term pro-
portional to vf , we trivially derive its Hermitian conjugate(

u(p′)M0vfu(p)
)†

= u(p)vfM0u(p
′). (68)

Elements containing M0 and γ5 require slightly more alge-
bra when taking the Hermitian conjugate, but the overall re-
sult yields a simple minus sign compared to the case without
any γ5 terms,(

u(p′)M0afγ
5u(p)

)†
= −u(p)γ5afM0u(p

′). (69)

Wishing to find a correction to the cross-section, we now
square (67) using the results just derived. The cross-terms
do not contribute to the overall cross-section, so we only
keep terms proportional to u(p′)M0u(p)u(p)M0u(p

′)
andu(p′)M0u(p)γ

5u(p)M0γ
5u(p′). This gives an expres-

sion for the squared cross-section,

|M|2 =
g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2
× {u(p′)M0vfu(p)u(p)M0vfu(p

′)

+ u(p′)M0afγ
5u(p)u(p)M0afγ

5u(p′)}.

(70)

We now use trace algebra to simplify the terms in (70),
since Tr(|M|2) = |M|2, as |M|2 is scalar. It is possible to
exploit the symmetry of the cyclic permutations of the trace
to collect spinors and anti-spinors and thus make use of the
completeness relations.

The first term is trivially,

Tr(u(p′)M0vfu(p)u(p)M0vfu(p
′))

= v2f |u(p′)M0u(p)|2,
(71)
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which mimics the QED case, as expected. The second term is
calculated similarly, taking care with the γ5’s,

Tr(u(p′)M0afγ
5u(p)u(p)M0afγ

5u(p′))

= a2f |u(p′)M0u(p)|2.
(72)

Inserting (71) and (72) into (70), we find the square am-
plitude becomes

g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2
|u(p′)M0u(p)|2(v2f + a2f ), (73)

and thus we have a correction to the leading order scattering
process. The correction is given by

g2z
4
(v2f + a2f )

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2
, (74)

an analogous result to the square of (31). Once again, we can
checkwith crossing symmetrywhether this changes for an an-
nihilation event, and indeed it does not. Similarly, this is ex-
pected for reasons previously foretold (see Section 4.1).

Now,wemust integrate over the phase-space, but sincewe
see that the square brackets term in (74) is equal to that seen
previously, namely in (32) and therefore (14), we can jump to
the total correction by comparing (74) with (33), giving

g2z
32π2

(v2f + a2f ) log
(
−q2

m2
Z

)
I(v,v′), (75)

where the log term is cut-off by the non-fictitious Z0-boson
mass,mZ , since theZ0-boson propagator contains no IR di-
vergence. Similarly, in the large−q2 limit, I(v,v′) is cut-off
by themZ mass instead of the regulator µ. Therefore in the
large−q2 limit, we find the correction to the cross-section to
be

g2z
16π2

(v2f + a2f ) log
2

(
−q2

m2
Z

)
, (76)

and so we have recovered the Sudakov double logs in the elec-
troweak theory for the case of softZ0-bosonBremsstrahlung.
This result agrees with the literature, that cross-sections in-
volvingZ0-boson exchange contain corrections proportional
to (76) [17].

Interestingly, although the electroweak and QED cases
both find corrections proportional to double logs, (76) dif-
fers fundamentally from the QED case, (34) because the elec-
troweak correction is finite due to the massive boson propa-
gator regulated naturally bymZ .

4.2 Vertex Loops

e−(p)

e+(p′)

γ orZ0

Z orW±

λ1 + λ2γ
5

λ1 + λ2γ
5

λ3 + λ4γ
5

Figure 4: The general 1st order vertex correction for an an-
nihilation process. The λi coefficients denote the individual
couplings for vector and axial-vector components of the ver-
tices. The λ4 component is zero in this diagram due to the
explicit condition that a photon mediates the hard process.

In this penultimate section, we devote our inquiry to the
study of general vertex corrections in the electroweak theory.
Since there aremany vertex corrections that can be derived for
different radiative emission (γ, Z0,W±) andboson exchange
in the hard process (Z0, γ), it is most efficient to consider the
most general vertex in the annihilation process, Figure 4. The
method in this section follows from the work in [9, 10] as de-
tailed in Section 2.7 and was conducted largely by my collab-
orator.

The most general vertex coupling for a fermion-fermion-
vector process is proportional to

Tµ ∝ [Fvγ
µ +GAγ

µγ5], (77)

in the limit of massless fermions, where g is a coupling con-
stant, andFv, GA are the vector and axial-vector form factors.
The form factors can be expressed in the form

Fv =
g2

16π2
fvV,

GA =
g2

16π2
gAV,

(78)

where g is a coupling constant. The V component con-
tains information about the integral over the loop, as well as
the momenta, and the fv and gA terms contain information
about the chiral nature at each vertex, which we explain fur-
ther shortly.

Wewish to evaluate these form factors to first order,much
like that for QED in Section 4.2. In Figure 2.7, it can be seen
that the vertices havebeendefined generally, such that theyde-
pend on λi parameters, which are the vector and axial-vector
couplings for a given vertex. For example, looking at the Feyn-
man rules forQEDand electroweak theory (seeAppendixA),
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we see that in the case of a pure QED vertex, there is only one
possible mapping, λ1 = Q,λ2 = 0, and for the case of a Z0

boson aswe considered in the last section, themappingwould
be λ1 = vf , λ2 = af . It is these lambda factors that make
up the fv and gA terms, which will be determined shortly.

FromFigure 4, andmimicking themethod in Section 4.2,
we write the scattering amplitude for the general 1-loop elec-
troweak correction. Here we just give the form of the gen-
eral numerator, since the denominator is naturally processed
in the PaVe integral as they are the same, see (21).

The general numerator can be written as

gµρv(p)γν(λ1 − λ2γ
5)�kγ

µ(λ3 − λ4γ
5)

× (�k + �p+��p
′)γρ(λ1 − λ2)u(p

′),
(79)

by applying the relevant Feynman rules and ignoring all prop-
agator denominator terms. In FeynCalc, this is then simpli-
fied and expanded into a linear combination of 1, kµ, .... The
1, kµ, ... terms are then substituted for the relevant C inte-
grals, and the integral is thus evaluated. The result fromFeyn-
Calc in n dimensions, neglecting terms not proportional to
γµ, γµγ5, is

[(λ21λ3 + 2λ1λ2λ4 + λ22λ3)v(p)γ
µu(p′)

× (2(n− 4)(p′ · (C11p
′ + C12)

+ 4(p′ · (C11p+ C12p
′)− (n− 2)(C21p

2
1

+ C22p
′2 − C23

s

2
+ (n− 2)C24)]

+ [(λ21λ4 + 2λ1λ2λ3 + λ22λ4)((n− 4)

× (p · (C11p+ C12p
′)) + 2(p′ · (C11p

+ C12p
′)) + (n− 2)(C23s− C24(n− 2))

v(p′)γµγ5u(p)].

(80)

Comparing (80) with (77) we see that since (80) is a linear
combination of terms proportional to γµ and γµγ5 we have
derived Fv andGA. We now give the V , fv and gA terms by
comparison, neglecting the p, p′ terms, and setting n = 4,

fv = λ21λ3 + 2λ1λ2λ4 + λ22λ3,

gA = λ21λ4 + 2λ1λ2λ3 + λ22λ4
(81)

and
V = 2s(C11 + C23)− 4C24, (82)

both of which agree with [9].
Now, [11] gives theCij terms as logarithmic expansion in

the large−q2 limit. To first order, the relevant terms are

C11 = − 1

2s
log2

(−q2
m2

2

)
+

1

s
log
( −q2

m1m2

)
,

C23 =
1

s
log
( −q2

m2m3

)
,

C24 = −1

4
log
(−q2
µ2

)
.

(83)

Thus, using Fv andGA, we can jump straight to the correc-
tions to the cross-section by using the samemethods outlined
previously. That is, summing the squares of the form factors,
recalling that this is a 1st order correction so the correction in-
cludes a 1+ term and the O(g4) terms are neglected, so the
correction is 1 + 2Fv + 2GA +O(g4).

In the case of a vertex loop mediated by a Z0 boson, we
get the following infinitesimal cross-section

g2z(v
2
f + a2f )

32π2

[
1− log2

(−q2
m2

Z

)
+ 4 log

( −q2

mZme

)]
dσ0,

(84)
and for aW± boson, we get

dσ0 +
g2W
32π2

[
− log2

(−q2
M2

W

)
+ 4 log

( −q2

MWmν

)]
dσ1,

(85)
where dσ0 is the leading order infinitesimal cross-section, and
dσ1 is a component of the infinitesimal cross-section derived
from the interference of theW± vertex correction with lead-
ing order. The dσ1 component is a result of the lack of the
ability to factorise theW± vertex from the first-order cross-
section. Thus,we endourderivationof the electroweak vertex
corrections.

4.3 Cancellation of Sudakov Logs
In this culminating section, we now revisit the idea of can-
cellation of Sudakov double logs by inspecting (76), (84) and
(85).

Unfortunately, (84) and (85) do not agree with the litera-
ture, [17], since each is incorrect by a factor of 1/2 in the log2

term. This means to suggest that there is an error in one or
more of the algebraic steps. An aside calculation starting from
the results for the general vertex form factors given in [9] (us-
ing our conventions), also yields the same corrections to the
cross-sections, (84) and (85). In this case, it could be that all
the necessary algebraic steps were taken and performed cor-
rectly, however, conventions may have been misaligned from
one source to another which could have been overlooked.

It was anticipated that the double log corrections forZ0-
bosons, (76) and (84), would cancel given that the same is true
in QED. However, since there is a factor of 1/2 difference in
the terms proportional to double logs, the cancellation ofZ0-
boson is not complete.

However, we may speculate on the properties of such
a system where the cancellation of the double log terms is
complete. Although not directly related to the results of the
last subsection, this speculation might allow for insight into
whether the factor of 1/2 is physical or an error, despite dis-
agreeing with the pre-existing literature. Should a compelling
case for cancellation of the Z0 contributions arise, then it
would amount to suggesting that the factor of 1/2 is an er-
ror in the calculations or a mismatching of conventions.
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Supposing that there is complete cancellationof the terms
proportional to double logs in (76) and (84), we still find a sin-
gle log residual term, 4 log(−q2/mZme). Despite this non-
cancellation, we can suggest that a cross-section inclusive of
these two processes might cancel, because our treatment of
the large−q2 limit of (15), or the approximate splitting of (15)
into (19), in Section 2.6 may have unintentionally suppressed
single log terms. These terms may not have been neglected
in the full calculation of the Cij coefficients in [11], leading
to the residual single log term. This also supports the narra-
tive that theremay be discordance in the conventions used be-
tween our study and [9, 11].

However, even presuming that the cancellation of theZ0

contributions is fully complete, it would still be ill-advised
to construct such a cross-section where just these processes
are considered since these form only two of the five processes
where the hard event is mediated by a photon. In a cross-
section inclusive of all five contributions, the photon radia-
tion (Section 3.1) and photon loop (Section 3.2) would cancel
as described previously, in addition to the cancellation of the
Z0-boson radiation and Z0-loop. However, the fifth contri-
bution, aW± vertex loop, has no radiative (Bremsstrahlung)
counterpart due to the flavour change on the lepton which
occurs. Explicitly, since the electron changes to a neutrino
after W± radiation, no annihilation can occur because the
neutrino and positron are not mutual antiparticles. If we
expect that the cancellation of double logs is representative
of the cancellation of soft Bremsstrahlung and vertex loops,
then we would not find cancellation of the Sudakov logs in
e+e− → µ+µ− because of themissing radiative counterpart
to theW± vertex loop. As such, in an inclusive cross-section,
theW± contribution remains as a residual, and there is a large
correctional factor to the cross-section. Furthermore, since
theW± is massive, the correction is IR finite, so this correc-
tion would be observable.

Although a more detailed calculation, inclusive of say a
Z0 mediating the hard process, may yield different results,
the cancellation of theW± vertex loop and its radiative part-
ner, cannot be reconciled due to the absence of a case where
aW± is emitted and annihilation occurs. This is likely in-
dicative of the nature of the electroweak force, that charged
and uncharged leptons exist within doublets, though may
still be observed unbound from this doublet. Since the elec-
troweak force has no confinement mechanism, unlike QCD
which does, we are able to produce a pure beam of given lep-
ton species, an effect of which we observe here with the lack
ofW± Sudakov double log cancellation. If it were the case
that the beam were also populated with equal parts e+, e−
and νe, νe, then under the radiative emission of aW± the re-
sulting electron-neutrino would be able to annihilate with an
anti-electron-neutrino from the beam. It could be possible
that the 1st order correction to this scenario does cancel with
the vertex loop correction.

This insight provides some more validation of the spec-

ulation for the QED cancellation discussed in Section 3.3.
There, we suggested that the cancellation of Sudakov logs was
due to the emission and absorption of a photon from a single
particle/antiparticle species. At the same time, we suggested
that it was impossible to specialise this answer further. Here,
we have also been unable to make any more specialisations to
this conceptualisation. However, we have been able to expand
the set of particles/antiparticles for which cancellation occurs
to include an entire electroweak particle/antiparticle doublet,
in the case that we allow for electroweak interactions.

Looking back at what was discussed in Section 3.3, we can
see that the statement that “the [cancellation of] QED Su-
dakov logs must be specifically due to photon emission and
exchangeon a single particle/antiparticle species” is equivalent
to stating that cancellation can only occur for processeswhich
allow for annihilation. These statements are equivalent since
in the QED case, where there is no flavour changing, anni-
hilation can only occur for particles/antiparticles of the same
type, e.g. e+, e−. After we relax the condition that exchange
is limited to a single particle/antiparticle species, and instead
to awhole leptonic doublet, theW± considerations fromear-
lier compound this thinking. Due to the flavour changing na-
ture of the W±, annihilation can still occur within a given
leptonic doublet (and its antiparticle counterparts).

Thus, we are able to overwrite our conceptual take on the
cancellation of Sudakov logs from Section 3.3 with something
much more digestible. If our line of thinking is correct, then
Sudakov log cancellation can be conceptually understood by
understanding which processes in a given theory allow for an-
nihilation to occur both for soft Bremsstrahlung and for ver-
tex loops. Thus, it would be easy to determine if the dou-
ble log corrections cancel by constructing a few Feynman di-
agrams.

In hindsight now, it is possible to use the aforementioned
considerations to suggest that the factor of 1/2missing from
(84) and (85) is in fact an algebraic or conventional error. This
is because we have suggested that the cancellation of Sudakov
logs is due to matching pairs of soft Bremsstrahlung and ver-
tex loop corrections which both allow for annihilation to oc-
cur. Since theZ0-boson allows for both these corrections, we
would expect them to cancel. If the factor 1/2 is a true re-
sult, then it would be impossible to develop such simple con-
ceptual analyses. Although obviously not near a guaranteed
proof that the factor 1/2 is a mathematical or conceptual er-
ror,Occam’s razorwould suggest that since the simplest expla-
nation is often the correct one, our simple explanation for the
cancellation of Sudakov logs suggests that the factor of 1/2 is
probably either mathematical or conventional.

The analysis in this section was conducted largely by my-
self.
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5 Conclusions and Further Work

In this report, we told the fable of the cancellation of Sudakov
double logarithms in QED and the electroweak theory. In the
QED case, we proved that the individual consideration of
soft emission or vertex loops leads to inconsistencies at the
cross-section calculation, as suggested by irremovable IR di-
vergences of the form

α

π
log
(−q2
m2

)
log
(−q2
µ2

)
. (86)

We then showed that inclusive consideration of these pro-
cesses cancels the divergences, a result previously derived by
Bloch and Nordsieck [2]. We suggested that since a physical
result is only obtainedwhen an inclusive cross-section is stud-
ied, the two processes should not be considered as separate in
their own right, and rather that they are two inseparable parts
of the same process. We concluded our study of radiative cor-
rections in QED by providing a correction to a scattering or
annihilation event, inclusive of the 1st order radiative correc-
tions previously calculated. We found this to be

dσ = dσ0

[
1− α

π
log
(−q2
m2

)
log
(−q2
E2

l

)]
, (87)

whereEl is theminimumphoton energy that canbedetected.
We then explored the same corrections in the elec-

troweak theory, recovering the Sudakov logarithms. For soft
Bremsstrahlung, the correction to the form factor was found
to be

g2z
16π2

(v2f + a2f ) log
2

(
−q2

m2
Z

)
, (88)

to 1st order. Following this calculation, we derived the correc-
tions for vertex loops with a Z0 orW± in the loop. For Z0,
the correction is

g2z(v
2
f + a2f )

32π2

[
1− log2

(−q2
m2

Z

)
+ 4 log

( −q2

mZme

)]
dσ0,

(89)
and forW± it is

dσ0 +
g2W
32π2

[
− log2

(−q2
m2

W

)
+ 4 log

( −q2

mWmν

)]
dσ1,

(90)
where the latter two corrections depart from the literature.

We found that in the Z0 case, there is a partial cancella-
tion of the Sudakov logs. However, with aW± in the loop,
there is no cancellation with soft Bremsstrahlung, as no such
annihilation event can occur forW± radiative emissionwhen
only electrons andpositrons are available. Therefore, theW±

leaves a residual correction to the cross-section in an inclusive
regime. However, due to theW± mass, this correction is nat-
urally regulated, and so there are no IR divergences. This cor-
rection should therefore be observable.

For future work, we are interested in the cancellation of
these logarithms beyond 1st order and are inspired to study
the non-cancellation of the logarithms in the electroweak case
with more detail. Additionally, we place intrigue on investi-
gating radiative corrections to an inclusive cross-section of a
beam homogeneous in all leptons. Moreover, we place em-
phasis on the investigation of an intuitive understanding of
these processes, and that some future research should be ded-
icated to producing amore inclusive andphysical understand-
ing of these processes and the cancellations of their correc-
tions. Such inquiry is important for public consumption of
physics, which ought to be accessible to everyone.
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f(p)

(a) i(�p+m)

p2−m2+iε

γ(p)

(b) −i
p2+iε

(
gµν − (1− ξ) p

µpν

p2

)
Figure 5: Feynman propagators for fermions (a) and photons (b). In the Feynman gauge, ξ = 0.

γ

f f

Figure 6: The vertex coupling in QED, given by iQeγµ. For electrons,Q = −1.

A Feynman Rules
This appendix briefly summarises the Feynman rules relevant to this report.

A.1 QED
The Feynman rules provide a simple foundation for constructing scattering amplitudes in quantum field theory. The QED
rules are taken from [1]. The Feynman rules for propagators in QED are outlined in Figure 5. The QED vertex coupling is
detailed in Figure 6. The rules for external lines are that fermions are given by spinors u and u for incoming and outgoing
particles, respectively. Anti-fermions are given by v and v for incoming and outgoing particles, respectively. Incoming and
outgoing photons are given by the polarisation vectors εµ and ε∗µ, respectively.

A.2 Electroweak Theory
The electroweak interaction introducesmanynew rules to playwith. TheFeynman rules for electroweak theory are taken from
[18] and [19]. The external lines, those representing ingoing and outgoing particles, are the same as QED. The propagators are
given in Figure 7. The vertex couplings can be seen in Figure 8, where

gW =
e

sin(θW )
, Vji = CKMMatrix, (91)

relates to theW boson couplings, and

gz =
e

sin(θW ) cos(θW )
, vf = I3f − 2Qf sin2(θW ), af = I3f , (92)

relates to theZ boson couplings.
There are additional couplings related to non-linear self-couplings, andHiggs interactions, but these are beyond the scope

necessary for this report.
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Figure 7: The propagators in electroweak theory.
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2
√
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Z

f

f
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2
γµ(vf − afγ

5)Vji

Figure 8: The vertex couplings in electroweak theory.
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B Dirac Algebra and Relations
This appendix contains some useful relations and simplifications for Dirac algebra, especially when dealing with numerators.
Only expressions relevant to this report have been summarised below.

2∑
r=1

ur(p)ūr(p) = (�p+m) (93)

2∑
r=1

vr(p)v̄r(p) = (�p−m). (94)

∑
εµε

∗
ν → −gµν , (95)

γµ† = γ0γµγ0, ψ = ψ†γ0. (96)

(ψaγ
µψb)

∗ = ψbγ
µψa, (97)

Tr(γµγν) = 4gµν (98)

iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ =

(
0 I2
I2 0

)
= γ5 (99)

(γ5)2 = I2, γ5, γµ = 0, (γ5)† = γ5, (100)

{γµ, γν} = 2gµν , (101)

γµγµ = 4I4, (102)

γµγµγ
ν = −2γν , (103)

γµγµγ
νγρ = 4gµν , (104)

γµγνγρ = gµνγρ + gνργµ − gµργν − iεσµνργσγ
5, (105)

εα...β is the Levi-Civita symbol in n dimensions.
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C Additional Algebra
The following appendix contains additional detail to the derivations laid out in Sections 3 and 4.

C.1 QED
In simplifying the numerator of some QED processes, namely the case of soft Bremsstrahlung in Section 3.1, there are a series
of γ-matrices and 4-vectors in the numerator which require attention to simplify. The following two equations detail such
simplifications

(�p+m)γµε∗µ(k)u(p) = (γµpµγ
νε∗ν +mγνε∗ν)u(p)

= (γµpµγ
µε∗ν + γνpνγ

µε∗ν − γνpµγ
µε∗ν +mγνε∗ν)u(p)

= (pµε
∗
ν{γµ, γν} − γνpµγ

µε∗ν +mγνε∗ν)u(p)

= (2pνε∗ν + (−�p+m)γνε∗ν)

= 2pµε∗µu(p),

(106)

and so
u(p′)γµε∗µ(�p

′ +m) = u(p′)2p′µε∗µ. (107)

C.2 Electroweak

C.2.1 Numerator Algebra

Likewise inQED, in the simplificationof thenumerator of some electroweakprocesses, namely soft Bremsstrahlung in Section
4.1, there are a series of γ-matrices and 4-vectors which require detailed analysis to simplify. This subsection is dedicated to
providing detailed derivations of some algebraic simplifications.

With reference to (64), we look at a possible process for simplifying the numerator. Taking the first term, we can expand
out the factor containing vf ,af , and γ5, then collecting scalars and distributing the ε∗µ term,

(�p+m)
(gz
2
γµ(vf − afγ

5)
)
ε∗µu(p) =

gz
2

(
(�p+m)γµvf − (�p+m)γµafγ

5
)
ε∗µu(p)

=
gz
2

(
vf (�p+m)γµε∗µ − af (�p+m)γµγ5

)
u(p),

(108)

where it is possible to see that the first term is the same as the QED case, with a scalar factor of vf , and the second term will
require more work. However, substitution of the QED case, from (106), enables additional clarity in seeing which steps to
take next,

gz
2

(
vf (�p+m)γµε∗µ − af (�p+m)γµγ5

)
u(p) =

gz
2

(
2vfp · ε∗ − af (�p+m)γµγ5

)
u(p). (109)

(�p+m)γµγ5ε∗µu(p) = γ5u(�p−m)γµε∗µu(p). (110)

Now distributing the γµ, using the anti-commutator identity, and applying the Dirac equation itself, we can simplify this
expression down to its final form

γ5u(�p−m)γµε∗µu(p) = γ5(�pγ
µ −mγµ)ε∗µu(p)

= γ5(γνpνγ
µ −mγµ)ε∗µu(p)

= γ5(pν(2g
µν − γµγν)−mγµ)ε∗µu(p)

= γ5(2pµ − γµ�p−mγµ)ε∗µu(p)

= γ5(2pµ − γµ(�p+m))ε∗µu(p)

= γ5(2pµ − γµ(�p−m+ 2m))ε∗µu(p)

= γ5(2pµ − γµ(�p−m) + 2mγµ)ε∗µu(p)

= γ5(2pµ + 2mγµ)ε∗µu(p)

= 2γ5(pµ +mγµ)ε∗µu(p).

(111)
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The other numerator can be simplified in a similar manner. The second numerator becomes

u(p′)(vf + afγ
5)gzp

′ · ε∗. (112)

C.2.2 Scattering Amplitude Simplification

Next we look at the simplification of the scattering amplitude, with reference to (64) after substitution of the simplifications
made in Appendix C.2.1. The full expression for the amplitude under the new numerators is, and becomes,

iM = u(p′)

[
M0gz(vf − afγ

5)
−p · ε∗

2p · k
+ gz(vf + afγ

5)
p′ · ε∗

2p′ · k
M0

]
u(p)

=
gz
2
u(p′)

[
M0(vf − afγ

5)
−p · ε∗

p · k
+ (vf + afγ

5)
p′ · ε∗

p′ · k
M0

]
u(p)

=
gz
2
u(p′)

[
M0vf

−p · ε∗

p · k
+M0afγ

5 p · ε∗

p · k
+ vfM0

p′ · ε∗

p′ · k
+ afγ

5M0
p′ · ε∗

p′ · k

]
u(p)

=
gz
2
u(p′)

[
M0vf

(p′ · ε∗
p′ · k

− p · ε∗

p · k

)
−M0afγ

5
(p′ · ε∗
p′ · k

− p · ε∗

p · k

)]
u(p)

=
gz
2

(
u(p′)M0(vf − afγ

5)u(p)

)[p′ · ε∗
p′ · k

− p · ε∗

p · k

]
.

(113)

C.2.3 Hermitian Conjugate

The details of the simplification of (69) is derived below,(
u(p′)M0afγ

5u(p)
)†

= (u(p))†(γ5)†afM†
0(u(p

′))†

= (u(p))†γ5afM†
0((u(p

′))†γ0)†

= −(u(p))†γ0γ5γ0afM†
0((u(p

′))†γ0)†

= −(u(p))†γ0γ5γ0afM†
0γ

0u(p′)

= −u(p)γ5afM0u(p
′)

(114)

i.e. we have just picked up a minus sign.

C.2.4 Trace Algebra

The trace algebra for (71) is detailed below

Tr(u(p′)M0vfu(p)u(p)M0vfu(p
′)) = Tr(u(p′)u(p′)M0vfu(p)u(p)M0vf )

= v2fTr(��p
′M0�pM0)

= v2f |u(p′)M0u(p)|2.
(115)

We can do the same for the second term, (72), taking care with the Dirac algebra and the γ5’s,

Tr(u(p′)M0afγ
5u(p)u(p)M0afγ

5u(p′)) = −Tr(��p
′afM0γ

5
�pγ

5afM0)

= a2fTr(��p
′M0(γ

5)2�pM0)

= a2fTr(��p
′M0�pM0)

= a2f |�u(p
′)M0u(p)|2.

(116)
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C.2.5 Square Amplitude

The square of the amplitude, e.g. (70) can be derived by the following,

|M|2 =
g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2{
u(p′)M0vfu(p)u(p)M0vfu(p

′)

+ u(p′)M0afγ
5u(p)u(p)M0afγ

5u(p′)

+ u(p′)M0vfu(p)u(p)M0afγ
5u(p′)

+ u(p′)M0afγ
5u(p)u(p)M0vfu(p

′)

}
,

(117)

where the cross terms vanish.
Substituting the Hermitian conjugates from Appendix C.2.3 gives

|M|2 =
g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2{
u(p′)M0vfu(p)u(p)M0vfu(p

′)

+ u(p′)M0afγ
5u(p)u(p)M0afγ

5u(p′)}

=
g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2{
v2f |u(p′)M0u(p)|2 + a2f |�u(p

′)M0u(p)|2
}

=
g2z
4

[p′ · ε∗
p′ · k

− p · ε∗

p · k

]2
|u(p′)M0u(p)|2(v2f + a2f ).

(118)
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